A regulatory locus of phosphorylation in the N terminus of the Na-K-Cl cotransporter, NKCC1.

نویسندگان

  • Rachel B Darman
  • Biff Forbush
چکیده

The secretory Na-K-Cl cotransporter NKCC1 is activated by secretagogues through a phosphorylation-dependent mechanism. We found a phosphorylation stoichiometry of 3.0 +/- 0.4 phosphorylated residues/NKCC1 protein harvested from shark rectal gland tubules maximally stimulated with forskolin and calyculin A, showing that at least three sites on the cotransporter are phosphorylated upon stimulation. Three phosphoacceptor sites were identified in the N-terminal domain of the protein (at Thr(184), Thr(189), and Thr(202)) using high pressure liquid chromatography and matrix-assisted laser desorption ionization time-of-flight mass spectrometry to analyze tryptic fragments of the radiolabeled cotransporter. None of these residues occurs in the context of strong consensus sites for known Ser/Thr kinases. The threonines and the surrounding amino acids are highly conserved between NKCC1 and NKCC2, and similarities are also present in the Na-Cl cotransporter NCC (or TSC). This strongly suggests that the phosphoregulatory mechanism is conserved among isoforms. Through expression of shark NKCC1 mutants in HEK-293 cells, Thr(189) was found to be necessary for activation of the protein, whereas phosphorylation at Thr(184) and Thr(202) was modulatory, but not required. In conjunction with the recent finding (Darmen, R. B., Flemmer, A., and Forbush, B. (2001) J. Biol. Chem. 276, 34359-34362) that protein phosphatase-1 binds to residues 107-112 in the shark NKCC1 sequence, these results demonstrate that the N terminus of NKCC1 constitutes a phosphoregulatory domain of the transporter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulatory phosphorylation sites in the NH2 terminus of the renal Na-K-Cl cotransporter (NKCC2).

Short-term regulation of members of the Na-K-Cl cotransporter family takes place by phosphorylation/dephosphorylation events. Three NH(2)-terminal threonines have been previously identified as phosphoacceptors involved in activation of the ubiquitous/secretory Na-K-Cl cotransporter (NKCC1). In this study, we demonstrate that the corresponding threonines are also involved in the regulation of th...

متن کامل

Regulated phosphorylation of the K-Cl cotransporter KCC3 is a molecular switch of intracellular potassium content and cell volume homeostasis

The defense of cell volume against excessive shrinkage or swelling is a requirement for cell function and organismal survival. Cell swelling triggers a coordinated homeostatic response termed regulatory volume decrease (RVD), resulting in K(+) and Cl(-) efflux via activation of K(+) channels, volume-regulated anion channels (VRACs), and the K(+)-Cl(-) cotransporters, including KCC3. Here, we sh...

متن کامل

Characterization of a novel interaction between the secretory Na+-K+-Cl- cotransporter and the chaperone hsp90.

The first isoform of the Na(+)-K(+)-Cl(-) cotransporter (NKCC1) is of central importance for the control of cellular ion concentration and epithelium-mediated salt secretion. Several studies have established that a change in intracellular [Cl(-)] (Cl(-)(i)) represents a key signaling mechanism by which NKCC1-induced Cl(-) movement is autoregulated and by which Cl(-) entry and exit on opposite s...

متن کامل

Astrocytes from Na(+)-K(+)-Cl(-) cotransporter-null mice exhibit absence of swelling and decrease in EAA release.

We reported previously that inhibition of Na(+)-K(+)-Cl(-) cotransporter isoform 1 (NKCC1) by bumetanide abolishes high extracellular K(+) concentration ([K(+)](o))-induced swelling and intracellular Cl(-) accumulation in rat cortical astrocytes. In this report, we extended our study by using cortical astrocytes from NKCC1-deficient (NKCC1(-/-)) mice. NKCC1 protein and activity were absent in N...

متن کامل

Multiple pathways for protein phosphatase 1 (PP1) regulation of Na-K-2Cl cotransporter (NKCC1) function: the N-terminal tail of the Na-K-2Cl cotransporter serves as a regulatory scaffold for Ste20-related proline/alanine-rich kinase (SPAK) AND PP1.

The Na-K-2Cl cotransporter (NKCC1) participates in epithelial transport and in cell volume maintenance by mediating the movement of ions and water across plasma membranes. Functional studies have previously demonstrated that NKCC1 activity is stimulated by protein phosphatase 1 (PP1) inhibitors. In this study, we utilized both in vivo (heterologous cRNA expression in Xenopus laevis oocytes) and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 40  شماره 

صفحات  -

تاریخ انتشار 2002